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EXECUTIVE SUMMARY 

Ultraviolet (UV) fluorescence and light scattering are two analytical methods commonly used in 
instrumentation for online measurement of oils in water. UV fluorescence-based instruments detect 
both dissolved and emulsified aromatic constituents of oils. Light-scattering-based sensors measure 
optical scattering induced by emulsified oil droplets. A major technical challenge for each method is 
to maintain quantitative accuracy in the presence of chemical and physical interferences, including 
fluorescent organic compounds (e.g., detergents and natural organic matter), suspended solid 
particles, dissolved salts, etc. To address this issue, we have been developing a new monitoring 
system that simultaneously combines both UV fluorescence and light scattering spectroscopy. Four 
major types of oils (lube oils 2190 and 9250, diesel fuel marine [DFM], and JP5), each of which had 
a dozen subtypes of oil samples, were examined to obtain the intensity of both fluorescence and 
scattering as a function of oil, detergent (Mil-D and Tide®), and seawater concentrations. Both 
fluorescence and light scattering intensities varied significantly with oil types and subtypes. Both 
Mil-D and Tide   greatly influenced the fluorescence and scattering of oil samples. 

The tremendous variations in fluorescence and scattering intensity with oil types and subtypes, 
detergents, and seawater make it difficult to calibrate the analytical instrument using traditional ' 
methods; hence, we have implemented a multivariate, nonlinear calibration of instrumental response 
through an artificial neural network. We have demonstrated that the simultaneous, combined use of 
fluorescence and scattering data significantly improves quantitative prediction accuracy. The trained 
backpropagation neural network was used successfully to predict concentrations of single oils and 
their mixtures, even in the presence of detergents and seawater, and appears well suited for 
calibrations of an online oil content monitor. The trained network processes information very quickly 
and is appropriate for real-time applications. The newly developed technique permits the online 
monitoring of oil spills, the accurate determination of oil concentrations in wastewater discharged 
from ships. 
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INTRODUCTION 

Online measurement of small quantities of oil in water (e.g., low mg L"1) is extremely difficult in 
the presence of many physical and chemical interferences. Both fluorescence and light scattering 
may be used for real-time measurement of oil content in wastewater (Nardella, Raw, and Stokes, 
1989; Parker and Pitt, 1986). The fluorescent technique detects the intensity of fluorescence emission 
from both dissolved and emulsified polycyclic aromatic hydrocarbons (PAHs) when irradiated with 
ultraviolet light (Andrews and Lieberman, 1998; Lieberman, 1998). This technique is very sensitive 
to PAH concentration, but the response is oil-type-dependent since oils have varying constituents and 
PAH content. Constantly revised calibrations of instruments are therefore necessary to allow for oil 
type variations. In many cases, the instrumental calibration is impossible because the oil composition 
of a sample (e.g., wastewater) is rarely known. Wastewater discharged from ships and tankers may 
contain other contaminants such as solid particles and detergents, which significantly influence the 
online fluorescence measurement of samples, causing even more severe calibration difficulties. 

The light scattering methods measure the attenuation of the intensity of light passing through a 
sample or the intensity of light that is scattered by the sample (Mowery et al., 1997; Nardella, Raw, 
and Stokes, 1989). One shortcoming of this technique is that it cannot detect the dissolved phase of 
oil constituents. In addition, the scattering technique poses difficulties in distinguishing between oil 
droplets and solid particles. Multi-angle scattering and re-emulsification methods reduce the effect 
induced by particles, but complete compensation for solids content is difficult. The multi-angle 
scattering correction is based on assumptions that the particle size of solids differs from that of oil 
droplets, and presumably the former is larger than the latter (Parker and Pitt, 1986). The re- 
emulsification correction uses ultrasonic techniques to mix oil-water samples. During this mixing 
process, it is theorized that the oil droplet size is reduced, but solid particles remain the same 
(Mowery et al., 1997; Parker and Pitt, 1986). However, many rust particles in wastewater will break 
down during sonication, resulting in analytical errors. 

The major technical challenge for each of these methods is to maintain quantitative accuracy for 
online measuring of oil-in-water concentrations in the presence of unknown chemical and physical 
interferences, including fluorescent organic compounds, detergents, suspended solid particles, and 
dissolved salts. Traditional methods for calibrating analytical instruments are clearly not applicable 
to this complex system, while an artificial neural network (ANN) may be suitable to associate 
variously derived spectral signals with specific concentrations of oils having various interfering 
factors. 

Artificial neural networks learn by observation, i.e., learn to recognize key features in a data set by 
repetitiously examining examples of the same or similar data (Zupan and Gasteiger, 1991). This 
attribute effectively identifies patterns in new or intricate data. There are numerous ANN paradigms, 
some more effective than others at addressing certain specific processing needs. However, the 
multilayer backpropagation paradigm is the most widely used (Andrews and Lieberman, 1994). The 
success and popularity of the backpropagation algorithm are based largely on its proven adeptness at 
solving pattern recognition problems. Any arbitrarily complex nonlinear associative mapping may be 
encoded into the weight space or memory of a backpropagation neural network. For example, the 
backpropagation neural network identifies seven types of oils based on their fluorescence spectra, 
and this data processing is suitable for real-time discrimination of fuels and oils under various 
conditions (Andrews and Lieberman, 1994). 



This report presents the combined use of fluorescence and scattering spectroscopy for 
quantitatively predicting single oils and mixtures in wastewater in the presence of interfering 
substances. A multivariate, nonlinear calibration of instrumental responses is implemented through 
the multilayer feed-forward backpropagation neural network. This newly developed technique 
permits accurate online monitoring of oils in natural waters resulting from spillage and leaking, and 
in wastewater discharging from ships and oil refinery industries. 



MATERIALS AND METHODS 

EXPERIMENTAL SECTION 

Samples 
Single and mixed oil samples were prepared with four types of oils: diesel fuel marine (DFM), jet 

fuel (JP5), and lube oils 2190 and 9250, all of which are commonly used in U.S. Navy ships. The oil 
concentration ranged from 10 to 120 mg L"1 for the training data set, and from 5 to 110 mg L"1 for the 
test data set. Selection of the oil concentration range was based on the current discharge limits set by 
Federal regulation: 15 mg L"1 of oil in the effluent in port and 100 mg L"1 at sea (Mowery et al., 
1997; Nardella et al., 1989). The serial addition method was used to increase oil concentration in a 
set of samples. After deionized water was analyzed as a blank, oil was added to the water to obtain a 
desired concentration, and then the sample was mixed at a low speed with a laboratory blender 
(stainless steel vessel) for 2 minutes. 

Mixed oil samples included binary and quadrate mixtures. The ratios of the mixtures ranged from 
1:1 to 1:5. Two detergents (Liquid Tide® and Mil-D), which are commonly used in U.S. Navy ships, 
and natural seawater were used as interferences. The concentrations of interferences in oil samples 
were 10, 30, and 60 mg L"1 for detergent, and 10, 50, and 100% for seawater. 

Fluorescence Measurement 
Samples with various oil concentrations were analyzed using the Hitachi model F-4500 

fluorescence spectrophotometer (Hitachi Instruments, Inc., Naperville, IL). The fluorimeter was 
equipped with a 150-W xenon discharge lamp, a reference phototube, an excitation monochromator, 
an emission monochromator, and a photomultiplier. Fluorescence emission spectra (250 to 550 nm, 
2-nm intervals) were collected at five excitation wavelengths (254, 266, 278, 290, and 302 nm). 
Samples were scanned with 3-mL quartz flow cells having a path length of 1 cm. All spectra were 
corrected for variations in system response as described in the Hitachi manual. 

After mixing, the sample was pumped through the spectrofluorimeter flow cells for 1 minute and 
scanned. More oil was added, the sample was mixed and analyzed, and the process was repeated until 
the maximum desired concentration was reached. After each series of measurements, the system was 
cleaned using hot, soapy water, followed by a hot water rinse and a room-temperature deionized 
water rinse. 

Light intensity in a fluorimeter may change with time because of bulb aging, which affects the 
intensity of oil fluorescence spectra. To monitor the power intensity of the light source, a standard 
fluorescing compound, quinine sulfate, was used as a quality control to examine the change in power 
intensity. The spectrum of quinine sulfate was collected at the beginning and end of each day of 
measurement. The sum of the spectral intensities of quinine sulfate from 400 to 520 nm was 
compared to determine if there was a significant change in light source. The data collected for oils 
were adjusted to a standard status using the intensity of the quinine sulfate spectra whenever 
necessary. 



Light Scattering Measurement 

Laser light scattering measurements were performed for each sample using an LISST-100 particle 
size analyzer (Sequoia Scientific, Inc., Mercer Island, WA). The instrument is composed of a 
collimated laser beam at 670-nm wavelength, beam manipulation and orienting mounts, a scattered- 
light receiving lens, and a 32-ring detector. The analyzer first detects the intensity of small-angle 
scattering induced by oil droplets in water. The scattering data are then inverted to produce the 
droplet size distribution (i.e., number, area, or volume of droplets per unit volume of water). The 
instrument outputs 32 size ranges from 1.25 to 250 jx in diameter, with scattering angles detected 
from 0.0017 to 0.34 radians. The recommended optical transmission is 30 to 99%. When the raw 
transmitted laser power falls below a factory-set minimum (i.e., optical transmission is very low for a 
sample of high oil concentration) the processed data are all zeros, which is hereafter referred to as the 
zero volume concentration distribution. 

During analysis, the sample was pumped through the scatter chamber. Once the chamber was 
filled, the LISST was shaken to release any large bubbles remaining in the chamber. One minute 
later, the scatter data were obtained and stored in the computer. 

ARTIFICIAL NEURAL NETWORK 

The neural network used in this study was a fully connected, feed-forward system trained with a 
backpropagation algorithm. The software was NeuralWorks Professional II Plus (NeuralWare, Inc., 
Pittsburgh, PA). All the neural network computations were performed on a Pentium® II 450-MHz PC 
with 128-MB RAM. 

The backpropagation neural network (figure 1) constitutes three layers: input, hidden, and output, 
each layer having varying neurons. The theory for backpropagation is briefly described below. For a 
more explicit description, see Rumelhart et al. (1986), Wasserman (1989), and Zupan and Gasteiger 
(1991). Training the backpropagation network requires the following four steps: (1) select a training 
pair from the training set and apply the input vector to the network input, (2) calculate the output of 
the network, (3) calculate the error between the network output and the desired output, and (4) adjust 
the weights of the network in a way that minimizes the error. Steps 1 through 4 for each training pair 
in the training set are repeated until the error for the entire training set is acceptably low. In step 2, 
the output calculation is performed on a layer-by-layer basis. Referring to figure 1, first the outputs 
of the neurons in layer i are calculated and the outputs are then used as inputs to layer j. The layery 
outputs are calculated and served as layer k inputs. The calculated layer k outputs based on the layer j 
outputs are the network outputs. 

Input layer (i) 

Hidden layer (j) 

Output layer (k) 

Figure 1. Three-layer backpropagation artificial neural network. 



In step 3, each network output is subtracted from its corresponding component of desired output 
vector to produce an error. This error is used in step 4 to adjust the weights of the network. After 
enough repetitions of these four steps, the error between actual outputs and desired outputs should be 
reduced to an acceptable value, and the network is trained. At this point, the network can be used for 
validation, and weights are not changed. In the validation process, a test pair from a test data set is 
input to the network, and the output is calculated. A comparison of the actual output with the desired 
output for the test pair shows how well the network has been trained. 

As shown above, training the backpropagation network involves two passes: forward and reverse. 
In the forward pass (steps 1 and 2), the input signal propagates from the network input to its output. 
In the reverse pass (steps 3 and 4), the calculated error signal propagates backward through the 
network. 

In the forward pass, the output vector (0,-) from the input layer (i) is given by 

Ot=f ZW+bj (1) 

where/is the transfer function, /, is the input vector in the input layer i, Wy is the connection weight 
vector between layers i and./', and bj is the bias term of layer j responsible for accommodating 
nonzero offsets in the data. The output vector for one layer is the input vector for the next, so 
calculating the outputs of the final layer requires the application of equation 1 to each layer, from the 
network's input to its output. 

The transfer function used in this study is sigmoid and has the following form: 

1 + e 

The sigmoid function compresses the range of summation so that the actual output (0,) lies 
between 0 and 1. However, when a MinMax table is used together with the sigmoid function, all 
input values are mapped to He between -1.0 and 1.0. A MinMax table was always selected in this 
study. To improve the network's convergence, all the input values between -1.0 and 1.0 are rescaled 
to he in the range from 0.2 to 0.8. 

In the reverse pass, all the weights are adjusted starting from the output layer to the hidden layer. 
Since a desired value is available in each neuron in the output layer, adjustment of the weights 
associated with the output layer k is readily accomplished using the generalized delta (<5) rule. The 8 
error (<5k) for each neuron in the output layer k for each training pair may be expressed as 

5k=Ok(l-Ok)(Dk-Ok), (3) 

where Ok and Dk are the network's actual and desired outputs, respectively, for the output layer. 

Since the hidden layer does not have the desired outputs, training is more complicated. The <5 error 
(8j) for a neuron in the hidden layer j for each training pair may be expressed as 

8j= Oj (1 - Oj) KSk Wjk), (4) 

where 0; is the output vector in the hidden layer j and Wjk is the connection weight vector between 
the hidden layer; and output layer k. 



These terror values from equations 3 and 4 are used to adjust connection weights: 

AW(n)=r]dO (5) 

AW(n + l) = r]dO + a[AW(n)] (6) 

W(n + l) = W(n) + AW(n+l) (7) 

where AW is the change in value for the connection weight between two layers, (n) is at step n 
(before adjustment), (n + 1) is at step (n + 1) (after adjustment), 77 is the learning rate, a is the 
momentum term, O is the output value, and Wis the connection weight. The momentum term is used 
to filter out high-frequency fluctuations of the network and to prevent to some degree the 
convergence process from being trapped into the local minima. Equations 5 through 7 are used for 
both hidden and output layers. For each neuron in a given layer, terrors are calculated, and all 
weights associated with that layer are adjusted. This process is repeated, moving back toward the 
input layer, layer by layer, until all weights are adjusted. The training process is accomplished when 
the error for the entire training set is acceptably low. 

A critical step in training a network is to optimize a number of parameters used in the network. 
The parameters include the number of hidden layers, the number of neurons in each hidden layer, the 
number of inputs and outputs, the transfer functions used in each hidden and output layer, learning 
rate, and momentum term. Since there are no formal rules to determine these parameters, their 
selection is based largely on trial and error. Performance of a network is evaluated on its ability to 
generalize, that is, to what degree a trained network can be used to recognize or predict unknown 
samples. The error is measured as the root mean square (RMS) at the output layer (Andrews and 
Lieberman, 1994) as follows: 

Z(0,-J>,)2 

RMS = \-> , (8) 
v n 

where 0, = actual output at neuron /, Dt = desired output at neuron i, n = the number of training or 
test pairs used in training or test. A lower RMS indicates a better-trained network, but a trained 
network with a low RMS may have been over-trained (see below). The best-trained neural network is 
therefore selected based on prediction percentage. The prediction percentage is calculated by 
dividing the number of correctly predicted test cases by the total number of cases in a set of test data. 
For this study, an oil concentration is correctly predicted when the predicted value falls within +5 mg 
L"1 or ±20%, whichever is greater (Parker and Pitt, 1986). 

Since a simple network with a minimum of hidden layers is preferred, the network used throughout 
this report has only one hidden layer. The general delta rule was employed as the learning rule 
throughout the computation. A constant momentum of 0.4 was used for training all the networks. 
Random values between -0.1 and 0.1, and -0.2 and 0.2 were used as the initial weights for the hidden 
layer and output layer, respectively. 

LINEAR MODEL 

Linear regression, which is the traditional method for calibrating an analytical instrument, was 
used as a benchmark for comparing ANN performance results. Both fluorescence and light scattering 



may be used to relate the oil concentration to signal intensity. For fluorescence, all intensities over 
wavelengths of 280 to 450 nm were summed as the total fluorescence intensity at each oil 
concentration. For light scattering, the summation of measured volume concentrations over droplet 
sizes of 1.25 to 66.39 p. was used as the total measured oil concentration for each oil sample. Simple 
linear regression was performed using fluorescence and scattering data of training sets for each oil 
type, and the resulting linear model was employed to calculate the oil concentration of samples in the 
test sets. Since having separate calibrations for each oil type is not practical for an online monitoring 
system, linear models encompassing all four oil types were also evaluated in terms of fluorescence 
and light scattering. 



RESULTS AND DISCUSSION 

FLUORESCENCE 

The fluorescence intensity of oils depends on oil type. The lube oils 2190 and 9250 had a relatively 
low intensity, while DFM and JP5 exhibited a relatively high intensity (figure 2). Two of the five 
excitation wavelengths—266 and 278 nm—produced high fluorescence intensities for all oil types. 
Only fluorescence spectra based on the 266-nm wavelength were used for all neural network training 
and testing in this study. 

2190 #200 
9250 #08 

JP5#117 

320 

^&o   40ff 
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Figure 2. Fluorescence of four oil types at concentration of 50 mg L"1 at five excitation wavelengths, 
(a) 2190, (b) 9250, (c) DFM, and (d) JP5. 



Figure 3 shows fluorescence spectra of single oils at various concentrations. In general, the spectra 
were distinguishable at low to medium concentrations. However, the spectral difference between 
concentrations became smaller when the concentration increased, and the spectra overlapped for JP5 
at concentrations greater than 80 mg L"1 (figure 3d). Although all four oil types showed different 
spectral patterns, they were characterized by strong fluorescence in the region of -350 nm. 
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Figure 3. Fluorescence intensity at 266 nm excitation wavelength as a function of oil 
concentration for four oil types, (a) 2190, (b) 9250, (c) DFM, and (d) JP5. Note that 
different scales are used for y axes. 

Different oil subtypes within the same oil type showed significant differences in fluorescence 
intensity (figure 4). The greatest variation was found in the lube oil 9250, with a factor of 8 from the 
lowest to highest (figure 4b). Two DFM oil subtypes, #208 and a, unlike other DFM subtypes, had a 
strong fluorescence at the wavelength of -400 nm (figure 4c). 

The fluorescence intensity of a mixture typically differs from that obtained by the simple linear 
addition of its component spectra; however, the difference is relatively small compared to oil types 
and subtypes (figure 5). The intensity of a mixture may be lower (DFM with 9250, and JP5 with 
9250), or higher (9250 with 2190, and JP5 with 2190) than the summation of intensities for the two 
single oils. 
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Figure 4. Fluorescence intensity variation with oil subtypes (50 mg L"1) for 
four oil types, (a) 2190, (b) 9250, (c) DFM, and (d) JP5 
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Figure 5. Effect of oil mixing (1:1 ratio) on fluorescence intensity, (a) mixture 
(60 mg L"1 ), 9250 and 2190 (both 30 mg L"1); (b) mixture (100 mg L"1), DFM 
(60 mg L"1), and 9250 (50 mg L"1); (c) mixture (110 mg L"1), JP5 (60 mg L"1), 
and 2190 (50 mg L"1); and (d) mixture (110 mg L"1), JP5 (50 mg L"1), and 9250 
(50 mg L"1). 
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Wastewater may contain contaminants such as detergents (e.g., Tide® and Mil-D) that influence 
the fluorescent pattern and intensity of oil samples. Mil-D presented a high fluorescence intensity 
(maximum -2300) from 280 to 350 nm, whereas Tide® exhibited a low fluorescence response 
(maximum -200) located between 400 and 500 nm (figure 6). The high fluorescence of Mil-D is 
expected to greatly interfere with the spectral pattern and intensity of oils. 

The spectral intensity of DFMft, when added with Tide® (60 mg L"1) did not change significantly, 
although the addition of Tide® slightly increased the fluorescence intensity at the oil concentration of 
100 mg L"1 (figure 7a). When Tide® was added to the lube oil 2190b, its fluorescence intensity and 
pattern changed greatly, with a decrease in intensity from 300 to 400 nm and an increase in intensity 
between 400 and 450 nm at all concentrations examined, which is attributed to Tide® (figure 7b). The 
detergent Mil-D showed a very different influence on the spectra of DFMft and 2190ft. Mil-D 
significantly increased the spectral intensity of DFMft at -350 nm at all concentrations (figure 7c). 
The band at 300 nm resulted from Mil-D itself. The addition of Mil-D to 2190ft dramatically changed 
the spectral patterns (figure 7d) so that the high-intensity band of Mil-D at -300 nm obscured the 
fluorescence spectra of 2190ft. 
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Salt concentration also influences the oil fluorescence. Seawater did not exert a significant impact 
on the fluorescence of 2190a, 9250 #22, and DFMa, but greatly changed the fluorescent intensity of 
JP5 (figure 8). When seawater was used instead of deionized water, the intensity of JP5 decreased 
(figure 8d). 

LIGHT SCATTERING 

Oil droplet size distribution varied with oil type, and there were generally two size regions, i.e., 
1.25 to 3 and 3 to 20 u, except for lube oil 9250, which was predominated by the size of 
1.25 to 3 u. (figure 9). The lube oil 2190 and JP5 exhibited distinguishable patterns at all 
concentrations examined (figures 9a and 9d). For the lube oil 9250, scattering patterns were 
separable at concentration lower than 50 mg L"1, while a higher concentration resulted in a zero 
distribution pattern. DFMb had a zero distribution pattern at the concentration of 120 mg L"1. 

Oil droplet size distribution patterns are similar for oil subtypes with regard to oil types of 9250 
and DFM, whereas their intensity (measured volume concentration) varied with subtypes (figure 10). 
Interestingly, the measured total volume concentration, which was the summation of all sizes from 
1.25 to 66.39 u,, was close to the true concentration for the lube oil 2190 and JP5 (figure 11). The 
concentration of DFM was underestimated. The variation of measured concentrations for oil subtypes 

13 



1200 b 9250 #22 

900 / ^ \ 

600 - 
/ /V       \ 

300 j p^k 
0 

 L. -                       1                                '                                I 

2000 

1500 

1000 - 

500 - 

300        350        400        450        500 300        350        400        450        500 
EMISSION WAVELENGTH (nm) 
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and (d) JP5. 

were relatively small for the three oil types (2190, DFM, and JP5) (figure 11). However, the variation 
of measured concentrations for lube oil 9250 was tremendous, with a difference of a factor of 3 
among oil subtypes (figure 11). This suggests that it is difficult to calibrate this light scattering 
instrument using traditional methods. 

The volume concentration distribution of an oil mixture was not equal to the summation of the two 
single oils (figure 12). The measured concentration of the mixture (60 mg L"1) of 9250 and 2190 was 
significantly higher than the addition of the single oils 9250 and 2190 (30 mg L"1 each) 
(figure 12a). For the other three mixtures (DFM/9250, JP5/2190, and JP5/9250), the volume 
concentration dropped to zero when 50 mg L"1 of single oils was mixed (figures 12b through 12d). 

Figure 13 shows the droplet size distributions for two detergents, Mil-D and Tide®. The droplet 
size for both detergents ranged from 10 to 80 u,, but Mil-D exhibited a much higher volume 
concentration than Tide®. When Mil-D was added to DFMb, the measured volume concentration 
between 1.25 and 10 u. dramatically decreased (figure 14a). While the addition of Tide® increased the 
volume concentration of DFMZ? at 50 mg L"1 for sizes over 1.25 to 3 u., Tide® decreased the measured 
concentration of DFMb at 100 mg L"1 (figure 14b). For 2190, both Mil-D and Tide® decreased the 
measured volume concentration (figures 14c and 14d). 
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Seawater increased the volume concentration of 2190 a at the concentration of 50 and 100 mg L"1 

at sizes ranging from 1.4 to 20 u. (figure 15a), whereas it decreased the volume concentration of 9250 
#22 at the concentrations of 10 and 50 mg L"1 (figure 15b). For DFMa and JP5, seawater decreased 
the volume concentration at 50 mg L"1, but it increased the volume concentration at 100 mg L"1, 
which had a zero volume concentration distribution in deionized water (figures 15c and 15d). 
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LINEAR MODEL 

For each of the four oil types, there was a reasonable correlation between fluorescence intensity 
and oil concentration for all single oils, with r2 > 0.6, even though the fluorescence intensity varied 
very much with the oil subtypes of the same oil type (figure 16). Using the linear models for 
individual oil types, the prediction of oil concentrations was > 60% except for 9250, which was 40% 
predicted and mostly overpredicted (figure 17). A poor model was obtained when all of the four oil 
types was used because of the much greater variation in fluorescence intensity among oil types 
(figure 18a). With this unified model, only 28% of the oil samples was predicted (figure 18b; 
table 1). 
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Table 1. Comparison of prediction percentage for single oils between the linear model and the 
artificial neural network (ANN). 

Variable Fluorescence Scattering Fluorescence + Scattering 

Linear model 28 20 23 

ANN 62 77 100 

For light scattering, there was an excellent correlation between the measured volume concentration 
and the true oil concentration for 2190 (figure 19a), but no correlation was found for 9250 and DFM 
(figure 19b and 19c), both of which had a zero volume concentration distribution at a high oil 
concentration. The prediction using the linear models for individual oil types was 60% for 2190, 20% 
for 9250, 53% for DFM, and 67% for JP5 (figure 20). Using all the scattering data for the four oil 
types, the correlation between the measured volume concentration and the true oil concentration 
decreased to r2 = 0.281 (figure 21a), and the prediction was only 20% (figure 21b; table 1). 

The use of a multivariate linear model, in which both fluorescence and light scattering data were 
employed, failed to improve the prediction of the concentration of single oils. The prediction rate was 
only 23% (table 1). 
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NEURAL NETWORK OPTIMIZATION 

Data sets used to train a network varied with application. The training data set may be one or a 
combination of seven sample sets. These consisted of single oils (140 samples), mixed oils (84 
samples), single oils (2190 and 9250) with Mil-D or Tide® added (213 samples each set), single oils 
(DFM and JP5) with Mil-D or Tide® added (213 samples each set), and single oils with seawater 
added (224 samples). There were nine data sets for testing the trained neural network (table 2). 

After data sets for training and testing were established, parameters in a neural network were 
optimized to generate the best architecture of the network. The parameters that were optimized 
included the number of iterations, the number of neurons in the hidden layer, the number of inputs 
and outputs, learning rate, and momentum term. The data sets of single oils were used as an example 
to show how these parameters were optimized. 

Table 2. Prediction percentage relevant to training and test data sets. 

1 fest Set 

Train Set Single 

(60)# 

Mixture 

(84) 

Single 
/Mil-D 
(2190 

& 
9250) 
(89) 

Single 
/Tide® 
(2190 

&9250) 
(90) 

Single 
/Mil-D 
(DFM 
&JP5) 

(90) 

Single 
/Tide® 
(DFM 
&JP5) 

(90) 

Single 
/sw 
(60) 

Mix 
/Mil-D 
(84) 

Mix 
/Tide8 

(84) 

Single oils (140)# 100 92 40 36 40 69 59 
(224) 

Mixture (84) n.p. 90 n.p. n.p. n.p. n.p. n.p. 

Single/Mil-D 
(213) 

(2190 & 9250) 

52 46 79 46 44 42 45 

(224) 

Single/Tide® 
(213) 

(2190 & 9250) 

48 41 24 93 27 41 63 

(224) 

d (852) 78 73 78 93 86 96 82 

(224) 

74 68 

S+d (992) 97 93 74 90 86 92 91 73 69 

S+sw+d(1216) 92 75 72 90 84 93 100 73 60 

S+d+m(1076) 97 96 71 92 88 98 91 74 73 

S+sw+d+m (1300) 93 88 78 90 87 92 100 74 67 

# Number of training or test pairs in the data set. 
S = single oil, d = detergent added, sw = seawater added, m = mixed oil. 
n.p. Not predicted. 
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Number of Inputs and Outputs 

The number of inputs depends on data available for the network. The input data in this study can 
be all the values of a full emission spectrum of fluorescence and light scattering, intervalically 
selected values, or characteristic bands of a spectrum. The whole spectrum consists of 151 values for 
fluorescence and 34 values (including two transmittances) for light scattering. The selection of 
characteristic bands may be the ideal choice for a single oil or a mixture of known components, but it 
is not applicable in practice for mixtures, the components of which are usually unknown. The whole 
spectrum or regularly selected values are therefore practical candidates as input data. Since using a 
whole spectrum was not superior to selected values in terms of concentration prediction, the 
intervalically selected spectral values (every 10 nm) of fluorescence were used as input data in this 
study. The number of values was 31. For scattering, only the first 24 values were selected, which 
included oil droplet sizes up to 66 |i. Droplets greater than 66 \i in a sample are considered as air 
bubbles. In addition, two transmittances from scattering were also included as input data. One is the 
laser transmission that is the measured laser power, in mW, transmitted through a sample, and the 
other is the optical transmission related to the ratio of the transmitted laser power to the original laser 
power. 

Three different groups of training data sets, i.e., fluorescence data (31 inputs), scattering data 
(26 inputs), and combination of the two (57 inputs), were used to determine which group was the best 
(table 1). The prediction based on fluorescence was the poorest (62% predicted) (figure 22a), with 
scattering second (77% predicted) (figure 22b), and a combination of the two the best (100% 
predicted) (figure 22c). For the network trained with the fluorescence data, concentrations were 
mostly under-predicted (slope = 0.754). Therefore, all the networks presented in this report were 
trained using the combination of fluorescence and light scattering data. 

The network had one output (i.e., the predicted concentration of an oil sample). 

Number of Iterations 

The backpropagation network may be over-trained, i.e., the network gives perfect results for the 
training set (low RMS), but poor predictions for the test set (high RMS) (Zupan and Gasteiger, 
1991). While training iterations increased from 1,000 to 40,000, RMSs for both the training and test 
decreased, and the prediction rate increased (figure 23). When the network was trained more than 
80,000 iterations, the training RMS kept decreasing, but the test RMS remained the same, and the 
prediction rate decreased. The optimized number of training iterations for this specific example was 
80,000, at which the prediction rate was 100% (figure 23). 

Number of Neurons in Hidden Layer 
A number was chosen after several trials, which demonstrated that the network performed no 

better with additional neurons. When choosing the number of neurons, it is important to make sure 
there are enough neurons to allow the network to learn its task. If the network performs significantly 
better with only a few additional neurons, this is an indication that too few hidden neurons are being 
used initially. However, if the network performance does not change with additional hidden neurons, 
then the initial amount is a safe number to use. The number of neurons in the hidden layer influenced 
the prediction performance (figure 24). The prediction rate for the testing data set increased with an 
increase in the number of hidden neurons. When the number of hidden neurons exceeded 20, the 
prediction percentage decreased. It is evident that the network's prediction performance was the best 
when 20 hidden neurons were used (figure 24). Too few neurons may give the network too few 
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adjustable weights so that the nonlinear properties of the system are not fully used. Too many 
neurons might make the network too complex to model the actual data set by introducing additional 
noise into the network. 

20 40 60 80 100 

TRUE CONCENTRATION (mg L"1) 

120 

Figure 22. Prediction of single oil concentrations using three 
networks trained with different data sets, (a) fluorescence data only, 
(b) scattering data only, and (c) fluorescence plus scattering. 
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Learning Rate 

Learning rate (rj) is another important parameter that can be adjusted during the training process. A 
learning rate that is too large leads to unstable learning, whereas a learning rate that is too small 
results in excessively long training time. In general, a larger rate is used at the beginning of the 
network's training, and a smaller value is used when the network approaches the convergence point. 

Changing both learning rates for the hidden and output layer affected prediction performance as 
well as RMS errors (figures 25 and 26). While the learning rate for the hidden layer increased from 
0.1 to 20, RMS (train) monotonically decreased, whereas the RMS (test) decreased at learning rates 
from 0.1 to 5, but increased beyond 5. The learning rate of 5 produced a 100% prediction. Similar 
results were found for the output layer. RMSs for both training and test increased and prediction rate 
decreased when the learning rate for the output layer exceeded 0.1 (figure 26). The combination of 
5 and 0.05 for the hidden and output layer, respectively, generated the best prediction. 
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Figure 25. Prediction percentage and RMS as a function of learning rate for hidden layer. 
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Figure 26. Prediction percentage and RMS as a function of learning rate for output layer. 

PREDICTION OF OIL CONCENTRATIONS USING VARIOUS TRAINED NEURAL NETWORKS 

For this study, the neural network could be trained with any combination of the seven individual 
training data sets. Literally speaking, there were 127 combinations of training data sets. Each 
network trained with one combination can be used to test the nine test data sets (table 2). In general, 
the trained network gives good predictions for test data sets similar to the training data sets. 
Whenever a network was trained in the presence of single oils, single oil concentrations were 
predicted >90%. The concentrations of 84 mixed oil samples were predicted well (92% predicted) 
using 140 single oil samples as a training data set, with a correlation coefficient of 0.951 (figure 27a). 
The prediction of mixed oils using mixed oils as a training data set was 90% (figure 27b). However, 
when the combination of single and mixed oil samples was used to train the network, the mixed oil 
prediction was improved to 98% (figure 27c). 

Based on prediction percentage, the best network trained to predict all the nine test data sets was the 
combination of single oils, mixed oils, and single oils with detergent added (table 2). This trained 
network predicted oil concentrations very successfully (88 to 98% predicted) except for the three sets 
of test data: 2190 and 9250 with Mil-D added, mixed oils with Mil-D added, and mixed oils with 
Tide® added. The worst group was lube oil 2190 and 9250 with Mil-D added, with the prediction 
percentage of 71% (figure 28). This is caused by the extremely high impact of Mil-D on the signals of 
fluorescence and scattering of 2190 and 9250, both of which possess a relatively low intensity of 
fluorescence. It should be pointed out that most of the incorrectly predicted were samples with low oil 
concentrations (5 or 10 mg L"1) or high Mil-D concentrations (30 or 60 mg L"1) (figure 28). Since 
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most of the incorrectly predicted samples had concentrations of 5, 30, 60, and 75 mg L" , which were 
not included in the training data set, a well-defined training data set should improve its prediction 
percentage. All samples (except one) with oil concentrations >90 mg L"1 were correctly predicted. 

Mixed oils with Mil-D or Tide® added were not predicted as well as other test data sets, i.e., 74% 
and 73%, respectively (figures 29 and 30). This may have resulted from no similar data sets included 
in the training data set. Note that most of the incorrectly predicted samples were samples with high 
Mil-D or Tide® added (30 or 60 mg L"1). 
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Figure 27. Prediction of mixed oil concentrations using three 
networks trained with different data sets, (a) trained with 
single oils, (b) trained with mixed oils, and (c) trained with 
single and mixed oils. 
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Figure 28. Prediction of oil concentrations for single oils (2190 and 9250) with Mil-D 
added. Network was trained with a combination of data sets: single oils, mixed oils, 
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Figure 29. Prediction of oil concentrations for mixed oils with Mil-D added. The 
network was trained with a combination of data sets: single oils, mixed oils, and 
single oils added with detergents. 
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Figure 30. Prediction of oil concentrations for mixed oils with Tide added. 
Network was trained with a combination of the data sets: single oils, mixed 
oils, and single oils added with detergents. 
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CONCLUSIONS 

Both UV fluorescence and light scattering were used to characterize various oil samples from four 
oil types. Significant differences in fluorescence and scattering intensities were found not only 
among oil types, but also among separate samples, or subtypes within the same oil type. Furthermore, 
other factors such as oil mixing, salt content, and detergent concentration greatly affected the 
intensity of both fluorescence and scattering of oils. The interfering strength decreased as follows: 
Mil-D > Tide®> Oil type > Seawater > Mixing. 

Before oil concentrations in wastewater can be measured accurately in real time, the analytical 
instrument must be calibrated. The traditional method—linear calibration— cannot be used for 
instrumental calibration. Using all four oil types in calibration results in a prediction rate of 28% 
(table 1). When the instrument is calibrated for each oil type with light scattering data, the prediction 
rates range from 20 to 67%. The all oil-type model with light scattering only predicts 20% of the oil 
samples (table 1). The use of multiple linear regression does not improve the prediction of the 
concentration of single oils. 

A novel instrumental calibration method was developed for application to online measurement of 
oil concentrations in wastewater. The technique combines ultraviolet fluorescence and light 
scattering with an artificial neural network. Combining fluorescence and scattering greatly improves 
the prediction of oil concentrations compared to separate use of fluorescence or scattering —100% 
predicted for singles oils (table 1). The artificial neural network can predict the concentration of 
various oil types in the presence of seawater and detergents, with prediction rates ranging from 71 to 
98% (table 2). With better defined training data sets, better prediction rates are expected for oil 
samples in the presence of chemical and physical interferences. The newly developed technique 
permits the online monitoring of oil spills, the accurate determination of oil concentrations in 
wastewater discharged from ships and the oil refinery industry, and oil detection in oil drilling fields. 
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